Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data

نویسندگان

  • Eduardo González-Ferreiro
  • Stéfano Arellano-Pérez
  • Fernando Castedo-Dorado
  • Andrea Hevia
  • José Antonio Vega
  • Daniel Vega-Nieva
  • Juan Gabriel Álvarez-González
  • Ana Daría Ruiz-González
چکیده

The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terrestrial laser scanning to estimate plot-level forest canopy fuel properties

This paper evaluates the potential of a terrestrial laser scanner (TLS) to characterize forest canopy fuel characteristics at plot level. Several canopy properties, namely canopy height, canopy cover, canopy base height and fuel strata gapwere estimated. Different approaches were tested to avoid the effect of canopy shadowing on canopy height estimation caused by deployment of the TLS below the...

متن کامل

Area-based parameterization of forest structure using full-waveform airborne laser scanning data

Small-footprint airborne laser scanning (ALS) is increasingly used in vegetation and forest related applications. This paper explores the potential of full-waveform (FWF) ALS information (i.e. echo width and backscatter cross section) for tree species classification and forest structure parameterization. In order to obtain defined physical quantities, radiometric calibration of the recorded FWF...

متن کامل

Forest Inventory Attribute Estimation Using Airborne Laser Scanning, Aerial Stereo Imagery, Radargrammetry and Interferometry–finnish Experiences of the 3d Techniques

Three-dimensional (3D) remote sensing has enabled detailed mapping of terrain and vegetation heights. Consequently, forest inventory attributes are estimated more and more using point clouds and normalized surface models. In practical applications, mainly airborne laser scanning (ALS) has been used in forest resource mapping. The current status is that ALS-based forest inventories are widesprea...

متن کامل

Large Scale Airborne Laser Scanning of Forest Resources in Sweden

The first large scale laser scanning project in Sweden for the purpose of forest inventory was started by a regional forestry board in central Sweden. The objective was to compare laser scanning with traditional operational methods for large area forest variable estimations. Laser data were acquired for a 50 km forest area in central Sweden with approximately 1.2 laser measurements per square m...

متن کامل

Estimating canopy fuels and their impact on potential fire behavior for ponderosa pine in the Black Hills, South Dakota

We evaluate whether current procedures used in fire behavior prediction models such as FVS-FFE provide predictions of CBD and CBH suitable for evaluating fire behavior in response to fuel treatments. Currently, FFE-FVS uses a geographic non-specific set of tree allometries and assumes a uniform distribution of crown mass when estimating CBH and CBD. We develop allometric equations to predict cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017